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Abstract

We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By

combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifi-

cations of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and

studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for

internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the

computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the

stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than

the original direct simulation algorithm in all cases considered.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we present an improved stochastic algorithm that computes the time evolution of a ho-

mogeneous reacting gas mixture in a closed adiabatic system with constant pressure. The reaction mech-

anism consists of several elementary chemical reactions

ðma;1; . . . ; ma;SÞ $ ðm�a;1; . . . ; m�a;SÞ; a ¼ 1; . . . ; I ; ð1:1Þ

where S is the number of chemical species and I is the number of possible reactions. The stoichiometric

coefficients ma;i and m�a;i of the species i in reaction a are non-negative integer values.

The time evolution of the state variables is given by the following initial value problem (cf. [12],

[15, formula (2); Ch. II, formulas (49), (52), (58)])
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dYi
dt

¼ Wi

.
_xxi; Yið0Þ ¼ Y0;i; i ¼ 1; . . . ; S; ð1:2Þ

with the chemical production rate of the ith species

_xxi ¼
XI
a¼1

ðm�a;i � ma;iÞqa ð1:3Þ

and the rate of progress of the ath reaction

qa ¼ ½Ma� Ka;f

YS
k¼1

½Xk�ma;k

 
� Ka;r

YS
k¼1

½Xk�m
�
a;k

!
: ð1:4Þ

Here Y , ½X � and W denote the vectors of the mass fractions, the molar concentrations, and the molecular

weights of the species, respectively. The mass density is denoted by .. The numbers Ka;f and Ka;r are the

forward and reverse rate constants for the ath reaction, which are assumed to have the following Arrhenius
temperature dependence

Ka;f ¼ Aa;f T ba;f expð�Ea;f=RT Þ; ð1:5Þ

Ka;r ¼ Aa;rT ba;r expð�Ea;r=RT Þ;

where Aa;f ;Aa;r are pre-exponential factors, ba;f ; ba;r are temperature exponents and Ea;f ;Ea;r are activation

energies. The factor ½Ma� ¼
PS

k¼1 Ba;k½Xk� takes into account that, in some reactions, a ‘‘third body’’ is re-

quired for the reaction to proceed. If no third body is needed, then ½Ma� ¼ 1: The time evolution of the

temperature is given by the equation (cf. [15, formula (15)])

dT
dt

¼ � 1

cp.

XS
k¼1

hkWk _xxk ¼ � 1

cp

XS
k¼1

hk
dYk
dt

; ð1:6Þ

where h is the vector of specific enthalpies, and cp is the mean specific heat capacity.

One of the first publications on calculating homogeneous reaction systems using stochastic ideas is

Bunker et al. [4]. In that paper an algorithm was proposed to simulate the combustion of propane in

an adiabatic plug flow reactor. Independently, Gillespie suggested an algorithm that mimics the dy-

namics of any well stirred gas mixture of reactive chemical species in thermal equilibrium [9]. In that

algorithm it is assumed that temperature is constant. This approach can be viewed as a mesoscopic
description of chemical reactions that is between the macroscopic description, given by particle densities

averaged over a control volume, and the microscopic description given by the momentum and the

position of all molecules contained in the control volume. By studying a steady state solution of the

Lotka reaction system, Gillespie demonstrated that the stochastic algorithm is able to account for

microscopic fluctuations [10]. Very recently this direct simulation algorithm has been used to study

chaos in chemical systems [17].

Stochastic algorithms based on [4,9] have been applied by several authors for various purposes. For

example in [2] the formation of soot using a coagulation reaction model has been investigated. Also re-
action diffusion problems have been studied using the algorithm in conjunction with components that

account for the diffusion process. The Fisher equation was studied in [3], and the Maginu equation was

investigated in [6]. Another area where the algorithm has been extensively applied is the modelling of

surface processes [8]. For example the temperature-programmed desorption was studied in [11,16]. In [13] a

detailed numerical study of the convergence properties of the Gillespie algorithm was performed.
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The purpose of this paper is to introduce an improved stochastic algorithm, to present two alternative

methods to include temperature dependence, and to study its convergence and performance properties. In

contrast to the direct simulation approach by Bunker et al. and Gillespie, the new algorithm is based on

combining forward and reverse reactions in order to achieve better efficiency, when partial equilibria are

reached. The algorithm contains various mechanisms of approximating the temperature step during an

elementary reaction – a simple first order approach, and an iteration scheme preserving enthalpy. The

algorithm is applied to a real combustion problem using a practically relevant fuel.

The paper is organized as follows. Section 2 is concerned with the description of the stochastic model.
The basic Markov jump process is defined, and relevant combustion quantities are represented in terms of

related random variables. The deterministic Eqs. (1.2), (1.3), (1.4), and (1.6) are derived from the stochastic

system. Finally, the corresponding stochastic algorithm is described. Results of numerical experiments are

presented in Section 3. The algorithm is applied to simulate the ignition of heptane. Heptane chemistry is

modelled with a detailed chemical mechanism that includes 107 species and 808 reversible reactions. It is

compared with an accurate deterministic method based on the solver DASSL for systems of stiff ordinary

differential equations. The first part of test calculations is concerned with the convergence behaviour of the

algorithm. In the second part the issue of performance is studied, and limitations of the present algorithm
are illustrated. Finally some conclusions are drawn in Section 4.

2. The stochastic model

2.1. Markov process

In this section we provide a detailed description of the stochastic algorithm. First we introduce the

corresponding Markov process in an abstract setting. Then we show how relevant combustion quantities
are represented in terms of this process. Special attention is paid to various approximations of the tem-

perature step. Next the deterministic equations are derived in the limit of an increasing particle number.

Finally, the algorithm is described as a method of averaging of functionals on trajectories of the Markov

process.

We consider a Markov process of the form

ZðnÞðtÞ ¼ N ðnÞ
1 ðtÞ; . . . ;N ðnÞ

S ðtÞ; T ðnÞðtÞ
� �

; tP 0; ð2:1Þ

where N ðnÞ
j ðtÞ 2 f0; 1; . . .g denotes the number of particles of type j ¼ 1; . . . ; S and T ðnÞðtÞ > 0 denotes

temperature at time t: The number of particles at time zero

n ¼
XS
j¼1

N ðnÞ
j ð0Þ

plays the role of an approximation parameter. Concerning the initial state, it is assumed that

lim
n!1

N ðnÞ
i ð0Þ
n

¼ k0
i ; i ¼ 1; . . . ; S; ð2:2Þ

and

T ðnÞð0Þ ¼ T 0 ð2:3Þ

for some constants k0
i ; T

0:
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The stochastic system (2.1) is a pure jump process defined by the generator

ðAUÞðxÞ ¼
XI
a¼1

QaðxÞ UðJaðxÞÞ½ � UðxÞ�; x 2 f0; 1; . . .gS �Rþ; ð2:4Þ

whereU is some test function. The distribution of the random jumps is determined by rate functions of the form

QaðxÞ ¼ jQa;f ðxÞ � Qa;rðxÞj; ð2:5Þ

where (cf. (1.1) and (1.5))

Qa;f ðxÞ ¼ cðxÞ1�
PS

j¼1
ma;jMaðxÞKa;f ðxSþ1Þ

YS
j¼1

Yma;j�1

i¼0

ðxj � iÞ; ð2:6Þ

Qa;rðxÞ ¼ cðxÞ1�
PS

j¼1
m�a;jMaðxÞKa;rðxSþ1Þ

YS
j¼1

Ym�a;j�1

i¼0

ðxj � iÞ; ð2:7Þ

and

MaðxÞ ¼

PS
k¼1 Ba;k

xk
cðxÞ if third body reaction with some species;

p
RxSþ1

if third body reaction with all species;

1 otherwise:

8<
: ð2:8Þ

The function c is a normalization parameter. The choice

cðxÞ ¼ RxSþ1

p

XS
j¼1

xj ð2:9Þ

corresponds to normalization with volume (cf. (2.17) below). The process performs jumps according to the

jump transformation

JaðxÞ ¼
Ja;f ðxÞ if Qa;f ðxÞPQa;rðxÞ;
Ja;rðxÞ otherwise;

�
ð2:10Þ

where

Ja;f ðxÞ ¼ ðx1 � ma;1 þ m�a;1; . . . ; xS � ma;S þ m�a;S; xSþ1 þ DTa;f ðxÞÞ ð2:11Þ

and

Ja;rðxÞ ¼ ðx1 � m�a;1 þ ma;1; . . . ; xS � m�a;S þ ma;S ; xSþ1 þ DTa;rðxÞÞ: ð2:12Þ

Remark. The second products in (2.6) and (2.7) assure that a reaction may only occur if there are enough of

the corresponding particles in the system (cf. (2.11) and (2.12)). Note that these products are zero if xj < ma;j

(or xj < m�a;j; respectively) for some j ¼ 1; . . . ; S. They are defined to be 1 in the case ma;j ¼ 0 or m�a;j ¼ 0;
respectively.

By definition, mass conservation means (cf. (2.10)–(2.12))

XS
j¼1

WjJaðxÞj ¼
XS
j¼1

Wjxj: ð2:13Þ
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This property holds provided that

XS
i¼1

Wima;i ¼
XS
i¼1

Wim
�
a;i; a ¼ 1; . . . ; I : ð2:14Þ

The basic theoretical result concerning the Markov process (2.1) is that, under assumptions (2.2) and (2.3)

lim
n!1

N ðnÞ
i ðtÞ
n

¼ kiðtÞ; i ¼ 1; . . . ; S; t > 0; ð2:15Þ

and

lim
n!1

T ðnÞðtÞ ¼ T ðtÞ; t > 0: ð2:16Þ

Later we will formally derive equations, which are satisfied by the limit of the stochastic process. For a

rigorous approach we refer to [7, p. 454]. These limiting equations can be numerically solved by the cor-

responding stochastic algorithm.

2.2. Physical quantities

Here we discuss how relevant physical quantities are represented in terms of the random variables

N ðnÞ
k ðtÞ; k ¼ 1; . . . ; S (cf. (2.1)), which correspond to the mole numbers nkðtÞ in the chemical literature.

The total mole number is

nðtÞ ¼
XS
k¼1

nkðtÞ �
XS
k¼1

N ðnÞ
k ðtÞ;

the total mass is

mðtÞ ¼
XS
k¼1

WknkðtÞ �
XS
k¼1

WkN
ðnÞ
k ðtÞ;

and the volume is

V ðtÞ ¼ RT ðtÞ
p

nðtÞ � RT ðnÞðtÞ
p

XS
k¼1

N ðnÞ
k ðtÞ; ð2:17Þ

where W denotes the vector of the molecular weights of the species, T and p denote temperature and

pressure, respectively, and R is a gas constant. Note that

1

n

XS
k¼1

N ðnÞ
k ðtÞ!n

XS
k¼1

kkðtÞ ¼: ~nnðtÞ;

1

n

XS
k¼1

WkN
ðnÞ
k ðtÞ!n

XS
k¼1

WkkkðtÞ ¼: ~mmðtÞ; ð2:18Þ

and

1

n
RT ðnÞðtÞ

p

X
j

N ðnÞ
j ðtÞ!n RT ðtÞ

p

XS
k¼1

kkðtÞ ¼: ~VV ðtÞ ¼ RT ðtÞ
p

~nnðtÞ: ð2:19Þ
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Remark. The quantities nðtÞ; mðtÞ, V ðtÞ are of physical size (large values). They are obtained from the

quantities ~nnðtÞ; ~mmðtÞ; ~VV ðtÞ (which are calculated using the limit functions kiðtÞ) by multiplication with the

appropriate initial total mole number nð0Þ: The quantities below are normalized (moderate values), and we

will use the same symbols for both the physical quantities and the quantities obtained using kiðtÞ:

The mole fraction of a species k is given by

XkðtÞ ¼
nkðtÞ
nðtÞ � N ðnÞ

k ðtÞP
j N

ðnÞ
j ðtÞ

!n kkðtÞP
j kjðtÞ

¼ kkðtÞ
~nnðtÞ ;

its mass fraction is

YkðtÞ ¼
WknkðtÞ
mðtÞ � WkN

ðnÞ
k ðtÞP

j WjN
ðnÞ
j ðtÞ

!n WkkkðtÞP
j WjkjðtÞ

¼ WkkkðtÞ
~mmðtÞ ; ð2:20Þ

and the molar concentration is

½Xk�ðtÞ ¼
nkðtÞ
V ðtÞ �

N ðnÞ
k ðtÞ

ðRT ðnÞðtÞ=pÞ
P

j N
ðnÞ
j ðtÞ

!n kkðtÞ
ðRT ðtÞ=pÞ

P
j kjðtÞ

¼ kkðtÞ
~VV ðtÞ

: ð2:21Þ

The mass density is

.ðtÞ ¼ mðtÞ
V ðtÞ ¼

PS
k¼1WknkðtÞ
V ðtÞ ¼

XS
k¼1

Wk½Xk�ðtÞ �
P

k WkN
ðnÞ
k ðtÞ

ðRT =pÞ
P

j N
ðnÞ
j ðtÞ

!n ~mmðtÞ
~VV ðtÞ

: ð2:22Þ

One obtains from the definitions that

XS
k¼1

YkðtÞ ¼ 1;
XS
k¼1

XkðtÞ ¼ 1;
XS
k¼1

½Xk�ðtÞ ¼
nðtÞ
V ðtÞ ¼

p
RT ðtÞ ;

and

YkðtÞ
Wk

¼ XkðtÞ
W ðtÞ

¼ ½Xk�ðtÞ
.ðtÞ ;

where

W ðtÞ ¼
XS
k¼1

WkXkðtÞ ¼
1

nðtÞ
XS
k¼1

WknkðtÞ ¼
mðtÞ
nðtÞ

is the mean molecular weight.
Further quantities, relevant for temperature considerations, are enthalpy HkðT Þ; specific enthalpy

hkðT Þ ¼ HkðT Þ=Wk, heat capacity CkðT Þ and specific heat capacity (at constant pressure) ckðT Þ ¼ CkðT Þ=Wk:
Note that [15, Ch. II, formula (15)]

ckðT Þ ¼
d

dT
hkðT Þ: ð2:23Þ

The mean enthalpy is

HðtÞ ¼
XS
k¼1

HkðT ðtÞÞXkðtÞ �
PS

k¼1 HkðT ðnÞðtÞÞN ðnÞ
k ðtÞP

j N
ðnÞ
j ðtÞ

!n
P

k HkðT ðtÞÞkkðtÞP
j kjðtÞ

;
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the mean specific enthalpy is

hðtÞ ¼
XS
k¼1

hkðT ðtÞÞYkðtÞ �
PS

k¼1 HkðT ðnÞðtÞÞN ðnÞ
k ðtÞP

j WjN
ðnÞ
j ðtÞ

!n
P

k HkðT ðtÞÞkkðtÞP
j WjkjðtÞ

; ð2:24Þ

the mean heat capacity is

CðtÞ ¼
XS
k¼1

CkðT ðtÞÞXkðtÞ �
PS

k¼1 CkðT ðnÞðtÞÞN ðnÞ
k ðtÞP

j N
ðnÞ
j ðtÞ

!n
P

k CkðT ðtÞÞkkðtÞP
j kjðtÞ

; ð2:25Þ

and the mean specific heat capacity is

cðtÞ ¼
XS
k¼1

ckðT ðtÞÞYkðtÞ �
PS

k¼1 CkðT ðnÞðtÞÞN ðnÞ
k ðtÞP

j WjN
ðnÞ
j ðtÞ

!n
P

k CkðT ðtÞÞkkðtÞP
j WjkjðtÞ

: ð2:26Þ

Note that from definitions (2.24) and (2.23) one obtains

d

dt
hðtÞ ¼

X
k

hkðT ðtÞÞ
d

dt
YkðtÞ þ

X
k

YkðtÞckðT ðtÞÞ
d

dt
T ðtÞ:

Thus, the enthalpy conservation property [15, formula (13)]

d

dt
hðtÞ ¼ 0 ð2:27Þ

and the definition (2.26) imply (cf. (1.6))

d

dt
T ðtÞ ¼ � 1

cðtÞ
XS
k¼1

hkðT ðtÞÞ
d

dt
YkðtÞ: ð2:28Þ

2.3. Temperature step

Here we construct concrete expressions for the terms DTa;f ðxÞ;DTa;rðxÞ in (2.11) and (2.12).

Using (2.26) and (2.20), Eq. (2.28) may be rewritten as

d

dt
T ðtÞ ¼ �

P
k HkðT ðtÞÞðd=dtÞnkðtÞP

k CkðT ðtÞÞnkðtÞ
: ð2:29Þ

Note that

N ðnÞ
k ðt þ DtÞ � N ðnÞ

k ðtÞ ¼ m�a;k � ma;k; ð2:30Þ

in case (2.11), and

N ðnÞ
k ðt þ DtÞ � N ðnÞ

k ðtÞ ¼ ma;k � m�a;k; ð2:31Þ

in case (2.12). These relations and (2.29) suggest first order approximations of the form

DTa;f ðxÞ ¼ �
PS

k¼1 HkðxSþ1Þ½m�a;k � ma;k�PS
k¼1 CkðxSþ1Þxk

; ð2:32Þ
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DTa;rðxÞ ¼ �
PS

k¼1 HkðxSþ1Þ½ma;k � m�a;k�PS
k¼1 CkðxSþ1Þxk

: ð2:33Þ

Next we construct a temperature step taking into account the conservation property (2.27). One observes

that mass conservation (2.14) implies (cf. 2.30 and 2.31)

XS
k¼1

WkN
ðnÞ
k ðt þ DtÞ ¼

XS
k¼1

WkN
ðnÞ
k ðtÞ:

Thus, (2.27) and (2.24) suggest an enthalpy preserving approximation of the temperature step

T ðnÞðt þ DtÞ � T ðnÞðtÞ defined via the equation

XS
k¼1

HkðT ðnÞðt þ DtÞÞN ðnÞ
k ðt þ DtÞ ¼

XS
k¼1

HkðT ðnÞðtÞÞN ðnÞ
k ðtÞ: ð2:34Þ

In order to solve (2.34) with respect to T ðnÞðt þ DtÞ we introduce the function

f ðxÞ :¼
X
k

HkðxÞN ðnÞ
k ðt þ DtÞ �

X
k

HkðT ðnÞðtÞÞN ðnÞ
k ðtÞ;

an iteration scheme

Tiþ1 :¼ Ti �
f ðTiÞ
f 0ðTiÞ

; T0 :¼ T ðnÞðtÞ;

and define

T ðnÞðt þ DtÞ ¼ lim
i!1

Ti:

From (2.23) one obtains

f 0ðxÞ ¼
X
k

CkðxÞN ðnÞ
k ðt þ DtÞ

so that

Tiþ1 ¼ Ti �
P

k HkðTiÞN ðnÞ
k ðt þ DtÞ �

P
k HkðT0ÞN ðnÞ

k ðtÞP
k CkðTiÞN

ðnÞ
k ðt þ DtÞ

: ð2:35Þ

2.4. Asymptotic behaviour

The Markov process (2.1) satisfies

UðZðnÞðtÞÞ ¼ UðZðnÞð0ÞÞ þ
Z t

0

ðAUÞðZðnÞðsÞÞdsþ lðnÞðtÞ; tP 0; ð2:36Þ

where lðnÞðtÞ is a martingale term vanishing in the limit n! 1: The representation (2.36) suggests that (cf.

(2.4))

d

dt
lim
n!1

UðZðnÞðtÞÞ ¼
XI
a¼1

lim
n!1

QaðZðnÞðtÞÞ UðJaðZðnÞðtÞÞÞ


� UðZðnÞðtÞÞ
�
: ð2:37Þ
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Since (cf. (2.6))

Qa;f ðxÞ ¼
cðxÞ
n

� �1�
PS

j¼1
ma;j

nMaðxÞKa;f ðxSþ1Þ
YS
j¼1

xjðxj � 1Þ � � � ðxj þ 1� ma;jÞ
nma;j

;

and, according to (2.15) and (2.16),

lim
n!1

N ðnÞ
j ðtÞðN ðnÞ

j ðtÞ � 1Þ � � � ðN ðnÞ
j ðtÞ þ 1� ma;jÞ

nma;j
¼ kjðtÞma;j ;

one obtains

lim
n!1

1

n
Qa;f ðZðnÞðtÞÞ ¼ ~ccðtÞ ~MMaðtÞKa;f ðT ðtÞÞ

YS
j¼1

kjðtÞ
~ccðtÞ

" #ma;j

ð2:38Þ

and, analogously (cf. (2.7)),

lim
n!1

1

n
Qa;rðZðnÞðtÞÞ ¼ ~ccðtÞ ~MMaðtÞKa;rðT ðtÞÞ

YS
j¼1

kjðtÞ
~ccðtÞ

" #m�a;j

; ð2:39Þ

where the notations

~ccðtÞ ¼ lim
n!1

1

n
cðZðnÞðtÞÞ ð2:40Þ

and

~MMaðtÞ ¼ lim
n!1

MaðZðnÞðtÞÞ

have been used. Note that (cf. (2.8), (2.15), and (2.16))

~MMaðtÞ ¼

PS
k¼1 Ba;k

kkðtÞ
~ccðtÞ if third body reaction with some species;

p
RT ðtÞ if third body reaction with all species;

1 otherwise:

8><
>: ð2:41Þ

Thus, Eq. (2.37) takes the form (cf. (2.5))

d

dt
lim
n!1

UðZðnÞðtÞÞ ¼ ~ccðtÞ
XI
a¼1

~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #ma;j
�����

� Ka;rðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #m�a;j
������ limn!1

n UðJaðZðnÞðtÞÞÞ


� UðZðnÞðtÞÞ
�
: ð2:42Þ

First we derive the equations for the state variables (1.2)–(1.4). Consider the test functions

UiðxÞ ¼
WixiPS
j¼1Wjxj

; i ¼ 1; . . . ; S;

and note that (cf. (2.20))

lim
n!1

UiðZðnÞðtÞÞ ¼ WikiðtÞPS
j¼1WjkjðtÞ

¼ YiðtÞ:
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According to (2.13) one obtains

UiðJa;f ðxÞÞ � UiðxÞ ¼
1PS

j¼1 Wjxj
Wiðxi
h

� ma;i þ m�a;iÞ � Wixi
i
¼ 1PS

j¼1Wjxj
Wiðm�a;i
h

� ma;iÞ
i

so that (cf. (2.18))

lim
n!1

n UiðJa;f ðZðnÞðtÞÞÞ


� UiðZðnÞðtÞÞ
�
¼ 1

~mmðtÞ Wiðm�a;i
h

� ma;iÞ
i

and, analogously,

lim
n!1

n UiðJa;rðZðnÞðtÞÞÞ


� UiðZðnÞðtÞÞ
�
¼ 1

~mmðtÞ Wiðma;i

h
� m�a;iÞ

i
:

Using (2.10), we obtain

lim
n!1

n UiðJaðZðnÞðtÞÞÞ


� UiðZðnÞðtÞÞ
�

¼
1
~mmðtÞ Wiðm�a;i � ma;iÞ
h i

if limn!1
1
n Qa;f ðZðnÞðtÞÞP limn!1

1
n Qa;rðZðnÞðtÞÞ;

1
~mmðtÞ Wiðma;i � m�a;iÞ
h i

otherwise:

8><
>:

Thus, Eq. (2.42) implies (cf. (2.38) and (2.39))

d

dt
YiðtÞ ¼

~ccðtÞ
~mmðtÞ

XI
a¼1

~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #ma;j
2
4 � Ka;rðT ðtÞÞ

YS
j¼1

kjðtÞ
~ccðtÞ

" #m�a;j
3
5 Wiðm�a;i
h

� ma;iÞ
i
: ð2:43Þ

With the choice (2.9) one obtains (cf. (2.19) and (2.40))

~ccðtÞ ¼ ~VV ðtÞ ð2:44Þ

and Eq. (2.43) takes the form (cf. (2.21) and (2.22))

d

dt
YiðtÞ ¼

Wi

.ðtÞ
XI
a¼1

½m�a;i � ma;i� ~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

½Xj�ðtÞma;j

 
� Ka;rðT ðtÞÞ

YS
j¼1

½Xj�ðtÞm
�
a;j

!
; ð2:45Þ

where (cf. (2.41))

~MMaðtÞ ¼

PS
k¼1 Ba;k½Xk�ðtÞ if third body reaction with some species;

p
RT ðtÞ if third body reaction with all species;

1 otherwise:

8<
:

Note that, up to notations, Eq. (2.45) is identical with (1.2), (1.3), (1.4).
Next we derive the equation for the temperature (1.6). Consider the test function

UðxÞ ¼ xSþ1

and note that (cf. (2.1) and (2.16))

lim
n!1

UðZðnÞðtÞÞ ¼ T ðtÞ: ð2:46Þ
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According to (2.11) and (2.12) one obtains

UðJa;f ðxÞÞ � UðxÞ ¼ DTa;f ðxÞ

so that

lim
n!1

n UðJa;f ðZðnÞðtÞÞÞ


� UðZðnÞðtÞÞ
�
¼ lim

n!1
nDTa;f ðZðnÞðtÞÞ

and analogously,

lim
n!1

n UðJa;rðZðnÞðtÞÞÞ


� UðZðnÞðtÞÞ
�
¼ lim

n!1
nDTa;rðZðnÞðtÞÞ:

Using (2.10), we obtain

lim
n!1

n UðJaðZðnÞðtÞÞÞ


� UðZðnÞðtÞÞ
�

¼ limn!1 nDTa;f ðZðnÞðtÞÞ if limn!1
1
n Qa;f ðZðnÞðtÞÞP limn!1

1
n Qa;rðZðnÞðtÞÞ;

limn!1 nDTa;rðZðnÞðtÞÞ otherwise:

(
ð2:47Þ

Assume

DTa;f ðxÞ ¼ �DTa;rðxÞ ð2:48Þ

so that

lim
n!1

nDTa;f ðZðnÞðtÞÞ ¼ � lim
n!1

nDTa;rðZðnÞðtÞÞ:

Then, using (2.46) and (2.47), Eq. (2.42) implies

d

dt
T ðtÞ ¼ ~ccðtÞ

XI
a¼1

~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #ma;j
2
4

� Ka;rðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #m�a;j
3
5 lim
n!1

nDTa;f ðZðnÞðtÞÞ: ð2:49Þ

With the approximations (2.32) and (2.33), which fulfil (2.48), we obtain (cf. (2.15))

lim
n!1

nDTa;f ðZðnÞðtÞÞ ¼ �
PS

k¼1 HkðT ðtÞÞ½m�a;k � ma;k�PS
k¼1 CkðT ðtÞÞkkðtÞ

;

and Eq. (2.49) takes the form

d

dt
T ðtÞ ¼ �~ccðtÞ

XI
a¼1

~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #ma;j
2
4

� Ka;rðT ðtÞÞ
YS
j¼1

kjðtÞ
~ccðtÞ

" #m�a;j
3
5PS

k¼1 HkðT ðtÞÞ½m�a;k � ma;k�PS
k¼1 CkðT ðtÞÞkkðtÞ

:
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With the choice (2.9), this equation transforms into (cf. (2.26), (2.18), (2.22), (2.21), and (2.44))

d

dt
T ðtÞ ¼ � 1

cðtÞ.ðtÞ
XS
k¼1

WkhkðT ðtÞÞ
XI
a¼1

~MMaðtÞ½m�a;k � ma;k� Ka;f ðT ðtÞÞ
YS
j¼1

½Xj�ðtÞma;j

"
�Ka;rðT ðtÞÞ

YS
j¼1

½Xj�ðtÞm
�
a;j

#
:

ð2:50Þ

Taking into account (2.45), we observe that, up to notations, Eq. (2.50) is identical with (1.6).

2.5. Description of the algorithm

The stochastic algorithm for the numerical treatment of Eqs. (1.2), (1.3), (1.4), and (1.6) consists in

generating trajectories of the Markov process (2.1) and averaging the appropriate functionals.
Given the state

x ¼ N ðnÞ
1 ðtÞ; . . . ;N ðnÞ

S ðtÞ; T ðnÞðtÞ
� �

; tP 0;

the process remains there for a random time s having exponential distribution with the waiting time pa-

rameter (cf. (2.6), (2.7), and (2.9))

pðxÞ ¼
XI
a¼1

jQa;f ðxÞ � Qa;rðxÞj; ð2:51Þ

i.e.,

Probðs P sÞ ¼ expð�spðxÞÞ; sP 0:

At the moment t þ s; a particular reaction is chosen according to the reaction probabilities

PaðxÞ ¼
jQa;f ðxÞ � Qa;rðxÞj

pðxÞ ; a ¼ 1; . . . ; I : ð2:52Þ

Finally, the process jumps into the state JaðxÞ (cf. (2.10)), and the same procedure is repeated.

3. Numerical experiments

3.1. Test case

The test case for our study is the combustion of n-heptane. This example is of practical relevance, since n-
heptane is part of the reference fuel for internal combustion engines such as spark-ignition, diesel, and gas

turbine engines. The chemistry is described by a reaction mechanism containing 107 chemical species and

808 reversible reactions [5]. The initial conditions are

Xn-C7H16
ð0Þ ¼ 0:0187; XO2

ð0Þ ¼ 0:2061; XN2
ð0Þ ¼ 0:7752:

Temperature and pressure are set to T ¼ 1500K and p ¼ 1:0133� 105 Pa. The time profiles of some re-

actants and products as well as temperature are displayed in Fig. 1. The oxidation of n-heptane takes place

in several steps. In a first phase n-heptane is decomposed into smaller hydrocarbons. After 5:0� 10�5 s this
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process is completed. At about 8:6� 10�5 s ignition takes place and CO is converted to CO2. During this

ignition process the number of reactions increases rapidly due to a chain-branching reaction mechanism.

3.2. Approximation

First we study convergence properties of the algorithm. We consider the test example for t 2 ½0; 0:0002�s
so that the ignition point is roughly in the middle of the time interval. The first order approximations (2.32)
and (2.33) are used to perform the temperature steps during a single reaction.

The average curves for the temperature are displayed in Fig. 2 for n ¼ 103; 104; 105; 106 and nL ¼ 107;
where L is the number of independent runs of the particle ensemble used to construct confidence bands.

These curves are compared with the results from the code DASSL [1] for solving systems of differential/

algebraic equations. DASSL has been applied successfully to combustion problems as part of the software

package SENKIN [15]. We mention that the DASSL-results are contained in the confidence band of the

averaged curve for n ¼ 105 and n ¼ 106:
The behaviour of both the systematic and the statistical error is highly non-uniform in time. These

quantities are displayed in Figs. 3 and 4 for different numbers of particles. Since the product nL is fixed, the

curves in Fig. 4 should converge with increasing n; as they indeed do outside a small neighborhood of

the ignition point. In that point the fluctuation is so strong that convergence has not yet been reached for

the values of n considered. The systematic error increases drastically during and after the ignition time. The

statistical error is much larger during the ignition period.

Results for the concentrations of some important species are displayed in Fig. 5. They show that different

numbers of particles are needed to resolve the time evolution correctly.

Finally we mention that, applying the iteration scheme (2.35) conserving enthalpy, we observed fast
convergence, but did not see any real improvement in the systematic error. Thus the first order approxi-

mations (2.32) and (2.33) turn out to be robust enough so that there is only weak accumulation of enthalpy

error and no significant influence on temperature.

Fig. 1. Time evolution of the species� mole fractions and temperature.
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3.3. Efficiency

Here we discuss the issue of performance for the stochastic algorithm. We compare it, on the one hand,

with the deterministic DASSL-algorithm and, on the other hand, with the direct simulation algorithm

Fig. 3. Error in temperature as a function of time, for different particle numbers.

Fig. 2. Time evolution of temperature for different particle numbers. The product of particle number and repetition is constant at

n� L ¼ 1:0� 107.
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(without combining forward and backward reactions). Note that the computation time required varies with

the tolerances used in the error control by DASSL. In our calculations, the default values were used. In-

creasing these values would reduce the computation time by less than an order of magnitude. However, the

general conclusions remain the same.

Fig. 4. Width of confidence intervals for temperature as a function of time, for different particle numbers.

Fig. 5. Heptane and carbon monoxide need different particle numbers to have small errors.
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A basic component influencing the computation time is the mean number of reactions RNðn; tÞ: It is easy
to see that (cf. (2.51), (2.4), and (2.5))

lim
n!1

RNðn; tÞ
n

¼: aðtÞ ¼
Z t

0

lim
n!1

1

n
pðZðnÞðsÞÞds:

The quantity ðd=dtÞaðtÞ represents the mean number of reactions per particle at time t: It can be expressed

via the solution of the problem. Since, according to (2.38), (2.39), (2.44), and (2.21)

lim
n!1

1

n
Qa;f ðZðnÞðtÞÞ ¼ ~VV ðtÞ ~MMaðtÞKa;f ðT ðtÞÞ

YS
j¼1

½Xj�ðtÞma;j

and

lim
n!1

1

n
Qa;rðZðnÞðtÞÞ ¼ ~VV ðtÞ ~MMaðtÞKa;rðT ðtÞÞ

YS
j¼1

½Xj�ðtÞm
�
a;j ;

one obtains

d

dt
aðtÞ ¼ ~VV ðtÞ

XI
a¼1

~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

½Xj�ðtÞma;j

����� � Ka;rðT ðtÞÞ
YS
j¼1

½Xj�ðtÞm
�
a;j

����� ð3:1Þ

for the new stochastic algorithm, and

d

dt
aðtÞ ¼ ~VV ðtÞ

XI
a¼1

~MMaðtÞ Ka;f ðT ðtÞÞ
YS
j¼1

½Xj�ðtÞma;j

"
þ Ka;rðT ðtÞÞ

YS
j¼1

½Xj�ðtÞm
�
a;j

#
ð3:2Þ

for the direct simulation algorithm. These formulas clearly show the origin of the efficiency gain of the

improved algorithm. Note that the right-hand side in formulas (3.1) and (3.2) can be calculated using the

DASSL-solution and used to predict the relative performance of the two stochastic algorithms.

Fig. 6. Normalized reaction numbers for the direct simulation and the improved algorithm.
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A comparison of the normalized reaction numbers for both stochastic algorithms is given in Fig. 6.

Up to ignition time their behaviour is very similar. However, during and after ignition the new algorithm

leads to a significant decrease of the number of reactions, compared to the original direct simulation

algorithm.

Fig. 7 shows the measured CPU-time CTðn; tÞ for a single run of the algorithm divided by the number of

reactions, for varying particle numbers. The observed convergence allows us to conclude that the CPU-time

is asymptotically proportional to the number of particles, i.e.

Fig. 7. Computational time divided by reaction number.

Fig. 8. Computational time as function of simulation time, for different solution methods.
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lim
n!1

CTðn; tÞ
n

¼: bðtÞ: ð3:3Þ

Note that the quantity bðtÞ=aðtÞ representing the mean effort per reaction does not vary significantly in

time.

The absolute values of the CPU-time for a single run of the algorithm are displayed in Fig. 8 for

varying particle numbers. It can be seen that the new algorithm outperforms the direct simulation al-

gorithm by a factor 25 up to time t ¼ 0:0002s and by a factor 100 up to time t ¼ 0:001s: Fig. 8 shows

how the length of the time interval, on which the stochastic algorithm is faster than the deterministic one,

depends on the number of particles. The necessary number of particles is determined by the accuracy and
depends on the functional to be resolved. For short simulation time the stochastic algorithm is signifi-

cantly faster than the deterministic algorithm. Using Fig. 8 we conclude that for n ¼ 104 the stochastic

algorithm is faster for simulation times up to 10�3; while for n ¼ 105 it is faster only for simulation times

up to 10�5; and for n ¼ 106 up to 10�6: These general conclusions can be applied to the quantities dis-

played in Fig. 5.

4. Concluding remarks

We proposed an improved stochastic algorithm for temperature-dependent homogeneous gas phase

reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency

was achieved. Two modifications of modelling the temperature dependence (with and without conservation

of enthalpy) were introduced and studied quantitatively. The algorithm was tested for the practically rel-

evant combustion of n-heptane.

The numerical studies reveal that

• the algorithm converges to the solution of the deterministic equation;
• combining forward and reverse reactions leads to a significant improvement over the direct simulation

method (up to a factor 100, dependent on the time interval);

• the first order temperature scheme is sufficient for practical applications.

In the original formulationof the stochastic algorithm, the presence of forward andbackward reactionswas

basically ignored. Now we combine those pairs to a single type of event, taking into account that the corre-

sponding elementary interactions cancel each other. Formally, the original process can be reproduced by first

ignoring reverse reactions by putting their rates equal to zero, and than introducing them as independent

reactions.
Finally we mention two main issues for future research. A first direction of study is the further

development of the stochastic algorithm. As we have solved the problem of simulating very fast pro-

cesses by accounting for partial equilibria, the treatment of the slower processes needs further attention.

Also the need of high accuracy for several species during ignition should be studied in more detail. A

second direction of study is the application of the stochastic algorithm to more complex problems, in

which it can successfully compete with its deterministic counterparts. As we have shown, the stochastic

algorithm is faster than DASSL, if the time interval is relatively small and the number of particles is

not too big. Small time intervals occur in situations where some splitting technique is used to decouple
several processes, one of which is chemistry. Moderate particle numbers are of interest in situations

where very accurate chemistry calculations are useless, since many other sources of error are involved.

A typical such complex problem are chemical processes in a random environment, e.g., in the context

of a PDF transport equation approach. Some rather promising first results in this direction are given in

[14].
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